Posts about Binary Tree

1026. Maximum Difference Between Node and Ancestor

Problem Setting

Given the root of a binary tree, find the maximum value V for which there exists different nodes A and B where V = |A.val - B.val| and A is an ancestor of B.

(A node A is an ancestor of B if either: any child of A is equal to B, or any child of A is an ancestor of B.)

Note:

  • The number of nodes in the tree is between 2 and 5000.
  • Each node will have value between 0 and 100000.

Example 1

Input: [8,3,10,1,6,null,14,null,null,4,7,13]

Example 1

Output: 7

Explanation:

We have various ancestor-node differences, some of which are given below : |8 - 3| = 5 |3 - 7| = 4 |8 - 1| = 7 |10 - 13| = 3 Among all possible differences, the maximum value of 7 is obtained by |8 - 1| = 7.

617. Merge Two Binary Trees

Problem Setting

Given two binary trees and imagine that when you put one of them to cover the other, some nodes of the two trees are overlapped while the others are not.

You need to merge them into a new binary tree. The merge rule is that if two nodes overlap, then sum node values up as the new value of the merged node. Otherwise, the NOT null node will be used as the node of new tree.

Example 1:

Input: 
    Tree 1                     Tree 2                  
          1                         2                             
         / \                       / \                            
        3   2                     1   3                        
       /                           \   \                      
      5                             4   7                  
Output: 
Merged tree:
         3
        / \
       4   5
      / \   \ 
     5   4   7

998 Smallest String Starting From Leaf

Problem Setting

The 2nd problem in Weekly Contest 122 is Smallest String Starting From Leaf

Given the root of a binary tree, each node has a value from 0 to 25 representing the letters 'a' to 'z': a value of 0 represents 'a', a value of 1 represents 'b', and so on.

Find the lexicographically smallest string that starts at a leaf of this tree and ends at the root.

(As a reminder, any shorter prefix of a string is lexicographically smaller: for example, "ab" is lexicographically smaller than "aba". A leaf of a node is a node that has no children.)