Split Up: dtreeviz (Part 3)
Goal¶
This post aims to break down the module dtreeviz
module step by step to fully understand what is implemented. After fully understanding this, I would like to contribute to this module and submit a pull request.
I really like this module and would like to see this works for other tree-based modules like XGBoost or Lightgbm. I found the exact same issue (issues 15) in github so I hope I could contribute to this issue.
This post is the 3rd part: breaking down ShadowDecTree
.
Reference
ShadowDecTreeNode
class¶
In [2]:
import numpy as np
import pandas as pd
from collections import defaultdict, Sequence
from typing import Mapping, List, Tuple
from numbers import Number
from sklearn.utils import compute_class_weight
from dtreeviz.shadow import ShadowDecTree
# skip ShadowDecTree Class
#
class ShadowDecTreeNode:
"""
A node in a shadow tree. Each node has left and right
pointers to child nodes, if any. As part of tree construction process, the
samples examined at each decision node or at each leaf node are
saved into field node_samples.
"""
def __init__(self, shadow_tree, id, left=None, right=None):
self.shadow_tree = shadow_tree
self.id = id
self.left = left
self.right = right
def split(self) -> (int,float):
return self.shadow_tree.tree_model.tree_.threshold[self.id]
def feature(self) -> int:
return self.shadow_tree.tree_model.tree_.feature[self.id]
def feature_name(self) -> (str,None):
if self.shadow_tree.feature_names is not None:
return self.shadow_tree.feature_names[ self.feature()]
return None
def samples(self) -> List[int]:
"""
Return a list of sample indexes associated with this node. If this is a
leaf node, it indicates the samples used to compute the predicted value
or class. If this is an internal node, it is the number of samples used
to compute the split point.
"""
return self.shadow_tree.node_to_samples[self.id]
def nsamples(self) -> int:
"""
Return the number of samples associated with this node. If this is a
leaf node, it indicates the samples used to compute the predicted value
or class. If this is an internal node, it is the number of samples used
to compute the split point.
"""
return self.shadow_tree.tree_model.tree_.n_node_samples[self.id] # same as len(self.node_samples)
def split_samples(self) -> Tuple[np.ndarray, np.ndarray]:
"""
Return the list of indexes to the left and the right of the split value.
"""
samples = np.array(self.samples())
node_X_data = self.shadow_tree.X_train[samples, self.feature()]
split = self.split()
left = np.nonzero(node_X_data < split)[0]
right = np.nonzero(node_X_data >= split)[0]
return left, right
def isleaf(self) -> bool:
return self.left is None and self.right is None
def isclassifier(self):
return self.shadow_tree.tree_model.tree_.n_classes > 1
def prediction(self) -> (Number,None):
"""
If this is a leaf node, return the predicted continuous value, if this is a
regressor, or the class number, if this is a classifier.
"""
if not self.isleaf(): return None
if self.isclassifier():
counts = np.array(self.shadow_tree.tree_model.tree_.value[self.id][0])
predicted_class = np.argmax(counts)
return predicted_class
else:
return self.shadow_tree.tree_model.tree_.value[self.id][0][0]
def prediction_name(self) -> (str,None):
"""
If the tree model is a classifier and we know the class names,
return the class name associated with the prediction for this leaf node.
Return prediction class or value otherwise.
"""
if self.isclassifier():
if self.shadow_tree.class_names is not None:
return self.shadow_tree.class_names[self.prediction()]
return self.prediction()
def class_counts(self) -> (List[int],None):
"""
If this tree model is a classifier, return a list with the count
associated with each class.
"""
if self.isclassifier():
if self.shadow_tree.class_weight is None:
return np.array(np.round(self.shadow_tree.tree_model.tree_.value[self.id][0]), dtype=int)
else:
return np.round(self.shadow_tree.tree_model.tree_.value[self.id][0]/self.shadow_tree.class_weights).astype(int)
return None
def __str__(self):
if self.left is None and self.right is None:
return "<pred={value},n={n}>".format(value=round(self.prediction(),1), n=self.nsamples())
else:
return "({f}@{s} {left} {right})".format(f=self.feature_name(),
s=round(self.split(),1),
left=self.left if self.left is not None else '',
right=self.right if self.right is not None else '')
Instantiate class objects¶
Create a tree model by scikit learn¶
In [3]:
import numpy as np
import graphviz
from sklearn import tree
X = np.array([[0, 0], [1, 1]])
Y = np.array([0, 1])
# Y = [0, 1]
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X, Y)
dot_data = tree.export_graphviz(clf, out_file=None,
feature_names=[0, 1],
class_names=['0', '1'],
filled=True, rounded=True,
special_characters=True)
graph = graphviz.Source(dot_data)
graph
Out[3]:
Create a ShadowDecTreeNode
¶
ShadowDecTreeNode __init__
- L222-226: store input arguments as class members
- L228-308: define the same functions in tree objects like
split
,feature
etc. or utility functions
In [4]:
# instantiate ShadowDecTree
shadow_tree = ShadowDecTree(tree_model=clf, X_train=X, y_train=Y, feature_names=[0, 1], class_names=[0, 1])
In [5]:
# instantiate ShadowDecTreeNode
shadow_tree_node0 = ShadowDecTreeNode(shadow_tree=shadow_tree, id=0)
shadow_tree_node0
Out[5]:
Methods under ``ShadowTreeDecNode¶
In [6]:
# L228 split
shadow_tree_node0.split()
Out[6]:
In [7]:
# L231 feature
shadow_tree_node0.feature()
Out[7]:
In [8]:
# L239 samples
shadow_tree_node0.samples()
Out[8]:
In [9]:
# L248 nsamples
shadow_tree_node0.nsamples()
Out[9]:
In [10]:
# L257 split_samples
shadow_tree_node0.split_samples()
Out[10]:
In [11]:
# L268 isleaf
shadow_tree_node0.isleaf()
Out[11]:
In [12]:
# L271 isclassifier
shadow_tree_node0.isclassifier()
Out[12]:
In [13]:
# L287 prediction_name
shadow_tree_node0.prediction_name()
Out[13]:
In [14]:
# L298 class_counts
shadow_tree_node0.class_counts()
Out[14]:
Comments
Comments powered by Disqus